110
Chapter 8
to targeted users will present your best chance of success. You harvest email
accounts, names, and phone numbers; browse social-networking sites; and
create a list of known employees. Your malicious email instructs the email
recipients that payroll information needs to be updated; they need to click
a link (a malicious link) in the email to do this. However, as soon as the user
clicks the link, the machine is compromised, and you can access the organi-
zation’s internal network.
This scenario is a common technique regularly leveraged in both pene-
tration tests and actual malicious attacks. It is often easier to attack via users
than it is to exploit Internet-facing resources. Most organizations spend a sig-
nificant amount of money protecting their Internet-facing systems with tools
such as intrusion prevention systems (IPSs) and web application firewalls,
while not investing nearly as much in educating their users about social-
engineering attacks.
In March 2011, RSA, a well-known security company, was compromised
by an attacker leveraging this same process. A malicious attacker sent an
extremely targeted (spear-phishing) email that was crafted specifically for an
Adobe Flash zero-day vulnerability. (
Spear-phishing
is an attack whereby users
are heavily researched and targeted rather than randomly chosen from a
company address book.) In RSA’s case, the email targeted a small group of
users and was able to compromise RSA’s internally connected systems and
further penetrate its network.
Browser-Based Exploits
We’ll focus on browser-based exploits within Metasploit in this chapter.
Browser-based exploits
are important techniques, because in many organiza-
tions, users spend more time using their web browsers than using any other
applications on their computers.
Consider another scenario: We send an email to a small group at an
organization with a link that each user will click. The users click the link, and
their browsers open to our website, which has been specially crafted to exploit
a vulnerability in a certain version of Internet Explorer. The users’ browser
application is susceptible to this exploit and is now compromised simply by
users visiting our malicious website. On our end, access would be gained via a
payload (Meterpreter, for example) running within the context of the user
who visited the site.
Note one important element in this example: If the target user were run-
ning as an administrator, the attacker (we) would do the same. Client-side
exploits traditionally run with the same permissions and rights as the target
they exploit. Often this is a regular user without administrative privileges,
so we would need to perform a
privilege-escalation attack
to obtain additional
access, and an additional exploit would be necessary to elevate privileges. We
could also potentially attack other systems on the network in hopes of gain-
ing administrative-level access. In other cases, however, the current user’s
permission levels are enough to achieve the infiltration. Consider your network
situation: Is your important data accessible via user accounts? Or is it accessible
only to the administrator account?